#### Fast classification of Static and Dynamic Environment for Bayesian Occupancy Filter

Qadeer Baig, <u>Mathias Perrollaz</u>, Jander Botelho Do Nascimento, Christian Laugier

> e-Motion team, Inria Rhône-Alpes (Grenoble), France

IROS 2012 – Workshop on Planning, Perception and Navigation for Intelligent Vehicles *October 7th, 2012* 



#### **Outlines**

 Environment monitoring in the Bayesian Occupancy Filter (BOF) framework

Fast Motion Detection

First results

- Conclusion



#### **Grid based DATMO**

- For mobile robots: Detection and Tracking of Moving Objects (DATMO) is essential for navigation
- For intelligent vehicles : DATMO is essential for risk estimation/ADAS
- . Three main approaches for DATMO [*Petrovskaya11*]:



October 7th, 2012

#### **Grid based DATMO**

#### Grid-based DATMO:

- Occupancy grid framework [Elfes 89]
- Each cell as a probability of being occupied
- No "objects"
  - ➔ No data association





# **Bayesian Occupancy Filter (BOF)**

Coué IJRR 2005

- Grid-based approach for Bayesian Filtering

Prediction/estimation loop

Each cell has an estimated occupancy and a probability distribution over possible velocities

➔ Allows to estimate velocities from grid measurements

- **Prediction:** propagates occupancy and velocity to neighboring cells, using dynamic models
- Estimation: corrects predicted grids using observation grids computed using sensor model





## **BOF : input grids**





Using stereo-vision *Perrollaz, T-ITS 2012* 



Using multi-layers laser scanners Adarve, ICRA 2012



6

## Moving objects vs Static environnement

- Separating dynamic (moving) objects from static ones (map)
  - Simplify the tracking (less hypotheses)
  - Allow to reason on behaviors for further risk estimation
  - Toward semantic description of the scene
- Classic approaches :
  - background substraction, mostly in vision [Jain 1979, Li 2000, Taleghani 2009]
  - . SLAM-based approaches for occupancy grids [Wang 2007, Burlet 2007, Vu 2009]
    - SLAM + DATMO
    - . SLAMMOT
      - → the complete SLAM needs be solved !



# Fast classification of the environment

- Fast classification of static/dynamic environment
  - Separate static from dynamic environment within the BOF framework
  - Not solving the complete SLAM problem
  - Fast and computationally efficient

→ First idea : filtering the grid using the cells' velocities estimated by the BOF



## **BOF: Velocities**

- Cell antecedents: knowing antecedent of a cell tells its velocity
  - ➔ Relative velocities
- Problem:
  - No information about the robot's motion
  - . Too many tracking hypotheses
  - . Static objects are also tracked
  - . Convergence is slow in large regions



→ Solution: Finding static parts before using the BOF



#### **BOF: Velocities**

- Solution: Finding static parts before using the BOF
- Advantages:
  - Reduces the number of hypotheses for BOF filtering
  - Can provide pior information about velocities to the BOF



#### **Fast Motion Detection**

- Main idea: How many times a cell is observed as free and how many times occupied, in a global coordinate system
  - Use free/occupied counters for each cell
  - Map cells from t-1 to t, using robot's motion
  - Update counters at each timestep





## **Grid Transformation**

- The objective is to map a cell *j* in grid  $OG_{t-1}$  to cell *i* in grid  $O_t$ , with the hypothesys of static environnement
- Method :
  - Using motion data from IMU
    - Velocity
    - Angular velocity
  - and circular motion model find pose of O<sub>t</sub> w.r.t O<sub>t-1</sub>
  - Using a global coordinate system to avoid border effects





#### Initialization and update

- Initialization:
  - FreeCounter<sub>t</sub>[i] = 1, if  $OG_t[i] < 0.5$
  - OccupiedCounter<sub>t</sub>[i] = 1, if  $OG_t[i] > 0.5$
- Updating counters from previous time step :
  - Mapping of cells of grid at time t-1 to grid at t
  - Update counters:
    - FreeCounter<sub>t</sub>[i] += FreeCounter<sub>t-1</sub>[j]
    - OccupiedCounter<sub>t</sub>[i] += OccupiedCounter<sub>t-1</sub>[j]

13

# **Motion grid**

#### Motion

- MotionGrid[i] =  $F(OG_t[i], FreeCounter_t[i], OccupiedCounter_t[i])$
- F can be a decision function, like:

$$MotionGrid_t[i] = \begin{cases} 1, & OG_t[i] > 0.5 \text{ and} \\ & FreeCount_t[i] > 2 * OccupiedCount_t[i] \\ 0, & \text{otherwise} \end{cases}$$

• Or F can be a probabilistic function, for further decision



#### **First results**



- 2 IBEO Lux laser scanners (4 layers each)
- 1 TYXZ stereo camera (baseline 22cm)
- Xsens MTI-G inertial sensor









#### **First results**



16

e-Motion

IROS 2012 – Workshop on Planning, Perception and Navigation for Intelligent Vehicles October 7th, 2012

#### Results



IROS 2012 – Workshop on Planning, Perception and Navigation for Intelligent Vehicles *October 7th*, 2012



17

#### **Next steps**

- Find best way to use this in the BOF
  - Use velocities' prior information for the static environnment
  - Use only dynamic environnement in the BOF
  - Use a Bayesian combination of both approaches
  - Incorporate the classification process into the BOF
- Evaluate the influence on the clustering of the grid
- Manage uncertainty of the motion estimation





#### Thank You!

#### Questions?

